Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Dev Neurosci ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583418

RESUMEN

INTRODUCTION: Transcription factor EB (TFEB), a key regulator of autophagy and lysosomal biogenesis, has diverse roles in various physiological processes. Enhancing lysosomal function by TFEB activation has recently been implicated in restoring neural stem cells (NSCs) function. Overexpression of TFEB can inhibit the cell cycle of newborn cortical NSCs. It has also been found that TFEB regulates the pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy lysosomal biogenesis. This study aims to explore the effects of TFEB activation on neurogenesis in vivo through transgenic mice. METHODS: We developed a GFAP-driven TFEB overexpression mouse model (TFEB GoE) by crossing the floxed TFEB overexpression mice and hGFAP-cre mice. We performed immunohistochemical and fluorescence staining on brain tissue from newborn mice to assess neurogenesis changes, employing markers such as GFAP, Nestin, Ki67, DCX, Tbr1 and Neun to trace different stages of neural development and cell proliferation. RESULTS: TFEB GoE mice exhibited premature mortality, dying at 10-20 days after birth. Immunohistochemical analysis revealed significant abnormalities, including disrupted hippocampal structure and cortical layering. Compared to control mice, TFEB GoE mice showed a marked increase in radial glial cells (RGCs) in the hippocampus and cortex, with Ki67 staining indicating these cells were predominantly in a quiescent state. This suggests that TFEB overexpression suppresses RGCs proliferation. Additionally, abnormal distributions of migrating neurons and mature neurons were observed, highlighted by DCX, Tbr1 and Neun staining, indicating a disruption in normal neurogenesis. CONCLUSION: This study, using transgenic animals in vivo, revealed that GFAP-driven TFEB overexpression leads to abnormal neural layering in the hippocampus and cortex by dysregulating neurogenesis. Our study is the first to discover the detrimental impact of TFEB overexpression on neurogenesis during embryonic development, which has important reference significance in future TFEB overexpression interventions in NSCs for treatment.

2.
Cell Rep ; 43(3): 113829, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421871

RESUMEN

The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.


Asunto(s)
Núcleos Parabraquiales , Médula Espinal , Ratones , Animales , Médula Espinal/fisiología , Tálamo/fisiología , Sustancia Gris Periacueductal/fisiología , Vías Nerviosas/fisiología
3.
Lancet Digit Health ; 5(12): e917-e924, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38000875

RESUMEN

The advent of generative artificial intelligence and large language models has ushered in transformative applications within medicine. Specifically in ophthalmology, large language models offer unique opportunities to revolutionise digital eye care, address clinical workflow inefficiencies, and enhance patient experiences across diverse global eye care landscapes. Yet alongside these prospects lie tangible and ethical challenges, encompassing data privacy, security, and the intricacies of embedding large language models into clinical routines. This Viewpoint highlights the promising applications of large language models in ophthalmology, while weighing up the practical and ethical barriers towards their real-world implementation. This Viewpoint seeks to stimulate broader discourse on the potential of large language models in ophthalmology and to galvanise both clinicians and researchers into tackling the prevailing challenges and optimising the benefits of large language models while curtailing the associated risks.


Asunto(s)
Medicina , Oftalmología , Humanos , Inteligencia Artificial , Lenguaje , Privacidad
4.
Adv Mater ; 35(51): e2306269, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37882357

RESUMEN

The challenge with aqueous zinc-ion batteries (ZIBs) lies in finding suitable cathode materials that can provide high capacity and fast kinetics. Herein, two-dimensional topological Bi2 Se3 with acceptable Bi-vacancies for ZIBs cathode (Cu-Bi2-x Se3 ) is constructed through one-step hydrothermal process accompanied by Cu heteroatom introduction. The cation-deficient Cu-Bi2-x Se3 nanosheets (≈4 nm) bring improved conductivity from large surface topological metal states contribution and enhanced bulk conductivity. Besides, the increased adsorption energy and reduced Zn2+ migration barrier demonstrated by density-functional theory (DFT) calculations illustrate the decreased Coulombic ion-lattice repulsion of Cu-Bi2-x Se3 . Therefore, Cu-Bi2-x Se3 exhibits both enhanced ion and electron transport capability, leading to more carrier reversible insertion proved by in situ synchrotron X-ray diffraction (SXRD). These features endow Cu-Bi2-x Se3 with sufficient specific capacity (320 mA h g-1 at 0.1 A g-1 ), high-rate performance (97 mA h g-1 at 10 A g-1 ), and reliable cycling stability (70 mA h g-1 at 10 A g-1 after 4000 cycles). Furthermore, quasi-solid-state fiber-shaped ZIBs employing the Cu-Bi2-x Se3 cathode demonstrate respectable performance and superior flexibility even under high mass loading. This work implements a conceptually innovative strategy represented by cation defect design in topological insulator cathode for achieving high-performance battery electrochemistry.

5.
PeerJ ; 11: e15840, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727684

RESUMEN

Objective: Hyperglycemia and insulin resistance or deficiency are characteristic features of diabetes. Diabetes is accompanied by cardiomyocyte hypertrophy, fibrosis and ventricular remodeling, and eventually heart failure. In this study, we established a diabetic cardiomyopathy (DCM) mouse model to explore the role and mechanism of miR-200a-3p in DCM. Methods: We used db/db mice to simulate the animal model of DCM and the expression of miR-200a-3p was then examined by RT-qPCR. Tail vein injection of mice was done with rAAV-miR-200a-3p for 8 weeks, and cardiac function was assessed by cardiac ultrasound. The levels of myocardial tissue injury, fibrosis, inflammation, apoptosis and autophagy in mice were detected by histological staining, TUNEL and other molecular biological experiments. Results: miR-200a-3p expression levels were significantly decreased in the myocardium of DCM mice. Diabetic mice developed cardiac dysfunction and presented pathological changes such as myocardial injury, myocardial interstitial fibrosis, cardiomyocyte apoptosis, autophagy, and inflammation. Overexpression of miR-200a-3p expression significantly ameliorated diabetes induced-cardiac dysfunction and myocardial injury, myocardial interstitial fibrosis, cardiomyocyte apoptosis, and inflammation, and enhanced autophagy. Mechanistically, miR-200a-3p interacted with FOXO3 to promote Mst1 expression and reduce Sirt3 and p-AMPK expression. Conclusion: In type 2 diabetes, increased miR-200a-3p expression enhanced autophagy and participated in the pathogenic process of cardiomyopathy throug7 Mst1/Sirt3/AMPK axis regulation by its target gene FOXO3. This conclusion provides clues for the search of new gene targeted therapeutic approaches for diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Lesiones Cardíacas , MicroARNs , Sirtuina 3 , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Autofagia/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/genética , Inflamación , MicroARNs/genética
6.
Am J Emerg Med ; 71: 139-143, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392513

RESUMEN

BACKGROUND: Non-ST-segment elevation myocardial infarction (NSTEMI) is a common form of acute myocardial infarction and rapid and accurate diagnosis is crucial for timely treatment. Current guidelines recommend using high-sensitivity cardiac troponin (hs-cTn) assays to determine circulating cTnI or cTnT levels. While the accuracy of the 0 h/1 h algorithm for diagnosing NSTEMI in different regions and patient populations remains controversial. Additionally, point-of-care testing (POCT) cTn assays have the potential to provide troponin readings to physicians within 15 min, but their accuracy in diagnosing NSTEMI in the emergency department (ED) requires further investigation. METHODS: A single-center prospective observational cohort study was conducted at Shaanxi Provincial People's Hospital to assess the analytical and diagnostic performance of the laboratory-based Roche Modular E170 hs-cTnT using the 0 h/1 h algorithm with Radiometer AQT90-flex POCT cTnT assay in undifferentiated chest pain patients presenting to the ED. Whole-blood samples were collected and hs-cTnT and POCT cTnI were measured simultaneously at baseline and after 1 h. RESULTS: The study results showed that the POCT cTnT assay using the 0 h/1 h algorithm had comparable diagnostic accuracy to the laboratory-based Roche Modular E170 hs-cTnT assay in diagnosing NSTEMI in patients with chest pain. CONCLUSION: The laboratory-based Roche Modular E170 hs-cTnT using the 0 h/1 h algorithm is reliable and accurate method for diagnosing NSTEMI in undifferentiated chest pain patients presenting to the ED. POCT cTnT assay has comparable diagnostic accuracy to the hs-cTnT assay and its rapid turnaround time makes it a valuable tool in expediting the diagnostic workup of chest pain patients.


Asunto(s)
Infarto del Miocardio sin Elevación del ST , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio sin Elevación del ST/diagnóstico , Estudios Prospectivos , Dolor en el Pecho/diagnóstico , Dolor en el Pecho/etiología , Troponina T , Troponina I , Algoritmos , Servicio de Urgencia en Hospital , Biomarcadores
7.
J Colloid Interface Sci ; 639: 263-273, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36805751

RESUMEN

Constructing well-defined nanostructures consisting of the multiple components with distinctive features are a promising but challenging strategy to develop advanced electroactive materials for energy storage applications. Herein, heterogeneous Ni-Co phosphide/phosphate with a specific hollow sea-urchin-like structure has been synthesized as advanced electroactive materials for both hybrid supercapacitor (HSC) and alkaline zinc-metal battery (AZB) applications. The heterogeneous Ni-Co phosphide/phosphate combines the merits of improved electrolyte interfacial property from the specific hollow sea-urchin-like structure, high electron-conductivity of phosphide, and better ion adsorption and solid diffusion property of phosphate. As a result, the Ni-Co phosphide/phosphate achieves a high capacity to 180.7 mA h g-1 at 1 A g-1, excellent rate capability of 51% capacity retention when the specific current increases by 50 times, and stable cycling stability of 85% capacity retention when cycled for 1000 cycles. Ex situ test was conducted to investigate the formation mechanism for the hollow and sea-urchin-like structure, which can be ascribed to the anion exchange reaction between pre-formed hydroxide and CO32- ions. When used to assemble HSCs with reduced graphene oxide (RGO), the HSCs exhibit a high specific energy of 49.4 W h kg-1, an ultrahigh specific power to 11.7 kW kg-1, and an eminent cycling stability over 10,000 cycles. Meanwhile, Ni2Co-P/POx-based AZB also achieves both high-energy and high-power performance with the specific energy of 308.0 W h kg-1 at 828.4 W kg-1 and 117.4 W h kg-1 at 30.8 kW kg-1. These results above suggest that heterogeneous Ni-Co phosphide/phosphate has great potential to be used as a candidate for both HSC and AZB applications.

8.
Front Cardiovasc Med ; 9: 1035728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407430

RESUMEN

Background: Coronary bifurcation lesions are common of percutaneous coronary intervention (PCI), and the optimal interventional therapy strategy is still a matter of debate and remains a challenge for interventional cardiologists. The provisional stenting technique is still a preferred method for most bifurcation lesions, but restenosis of the side branch (SB) occurs in approximately 17-19% of cases. Therefore, the dilemma of reducing SB restenosis still exists, and further research on strategies to reduce restenosis for SB is necessary. Drug-coated balloon (DCB) can reduce clinical events in small vessel disease and in-stent restenosis. The efficacy and safety of DCB for SB of true coronary bifurcation lesions have not been fully investigated. A randomized comparison of DCB combined with cutting balloon angioplasty vs. cutting balloon angioplasty for SB has never been published. Methods and design: The purpose of this study is to explore the superiority of DCB combined with cutting balloon vs. cutting balloon angioplasty for SB after main vessel (MV) drug-eluting stent implantation of true coronary bifurcation lesions. This study is a multicenter, prospective, randomized controlled trial including 140 patients with true coronary bifurcation lesions. Patients will be randomized in a 1:1 manner to receive either DCB combined with cutting balloon or cutting balloon angioplasty for SB after MV drug-eluting stent implantation. The primary endpoint is the evaluation of late lumen loss (LLL) of SB at the 9-month follow-up. The secondary endpoints include procedural success during initial hospitalization, LLL of MV at the 9-month follow-up, binary angiographic restenosis in MV and SB at the 9-month follow-up, the proportion of patients with a final post-PCI quantitative flow ratio result ≤ 0.80 for SB at the 9-month follow-up, and major adverse cardiac events during the 24-month follow-up. Conclusions: This clinical trial will provide evidence as to whether DCB combined with cutting balloon for SB of true coronary bifurcation lesions is a superior treatment approach. Trial Registration Number: ChiCTR2000040475. Dissemination: The results of this clinical trial will be published in a peer-reviewed journal.

9.
Sci Adv ; 8(45): eabn2136, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367932

RESUMEN

Achieving optimal behavior requires animals to flexibly retrieve prior knowledge. Here, we show that adult newborn granule cells (anbGCs) mediate emotional state-dependent adaptability of memory retrieval. We find that acute social reward (aSR) enhances memory retrieval by increasing the reactivation of engram cells, while acute social stress (aSS) weakens retrieval and reduces the reactivation. Such bidirectional regulation relies on the activation of distinct populations of anbGCs by aSR and aSS, triggering opposing modifications of dDG activity, which is sufficient to regulate and predict the performance of memory retrieval. Concordantly, in emotional disorder models, aSR-dependent memory adaptability is impaired, while the effect of aSS remains intact. Together, our data revealed that anbGCs mediate adaptability of memory retrieval, allowing animals to flexibly retrieve memory according to the current emotional state, and suggested the essential roles of anbGCs in translating emotional information to the regulation of memory expression.

10.
Nat Commun ; 13(1): 5199, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057681

RESUMEN

Allodynia is a state in which pain is elicited by innocuous stimuli. Capsaicin applied to the skin results in an allodynia that extends to a broad region beyond the application site. This sensitization is thought to be mediated by spinal networks; however, we do not have a clear picture of which spinal neurons mediate this phenomenon. To address this gap, we used two-photon calcium imaging of excitatory interneurons and spinal projection neurons in the mouse spinal dorsal horn. To distinguish among neuronal subtypes, we developed CICADA, a cell profiling approach to identify cell types during calcium imaging. We then identified capsaicin-responsive and capsaicin-sensitized neuronal populations. Capsaicin-sensitized neurons showed emergent responses to innocuous input and increased receptive field sizes consistent with psychophysical reports. Finally, we identified spinal output neurons that showed enhanced responses from innocuous input. These experiments provide a population-level view of central sensitization and a framework with which to model somatosensory integration in the dorsal horn.


Asunto(s)
Sensibilización del Sistema Nervioso Central , Hiperalgesia , Animales , Calcio/metabolismo , Capsaicina/metabolismo , Capsaicina/farmacología , Hiperalgesia/metabolismo , Ratones , Células del Asta Posterior/metabolismo , Asta Dorsal de la Médula Espinal
11.
Anal Chem ; 94(33): 11573-11581, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943780

RESUMEN

Energy deprivation and reduced levels of hydrogen sulfide (H2S) in the brain is closely associated with Alzheimer's disease (AD). However, there is currently no fluorescent probe for precise exploration of both H2S and adenosine triphosphate (ATP) to directly demonstrate their relationship and their dynamic pattern changes. Herein, we developed a two-photon fluorescent probe, named AD-3, to simultaneously image endogenous H2S and ATP from two emission channels of fluorescent signals in live rat brains with AD. The probe achieved excellent selectivity and good detection linearity for H2S in the 0-100 µM concentration range and ATP in the 2-5 mM concentration range, respectively, with a detection limit of 0.19 µM for H2S and 0.01 mM for ATP. Fluorescence imaging in live cells reveals that such probe could successfully apply for simultaneous imaging and accurate quantification of H2S and ATP in neuronal cells. Further using real-time quantitative polymerase chain reaction and Western blots, we confirmed that H2S regulates ATP synthesis by acting on cytochrome C, cytochrome oxidase subunit 3 of complex IV, and protein 6 of complex I in the mitochondrial respiratory chain. Subsequently, we constructed a high-throughput screening platform based on AD-3 probe to rapidly screen the potential anti-AD drugs to control glutamate-stimulated oxidative stress associated with abnormal H2S and ATP levels. Significantly, AD-3 probe was found capable of imaging of H2S and ATP in APP/PS1 mice, and the concentration of H2S and ATP in the AD mouse brain was found to be lower than that in wild-type mice.


Asunto(s)
Enfermedad de Alzheimer , Sulfuro de Hidrógeno , Adenosina Trifosfato , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Animales , Colorantes Fluorescentes , Ácido Glutámico , Células HeLa , Humanos , Sulfuro de Hidrógeno/análisis , Ratones , Fotones , Ratas
12.
Front Aging Neurosci ; 14: 842380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004003

RESUMEN

Multiple factors such as genes, environment, and age are involved in developing Parkinson's disease (PD) pathology. However, how various factors interact to cause PD remains unclear. Here, 3-month and 9-month-old hα-syn+⁣/- mice were treated with low-dose rotenone for 2 months to explore the mechanisms that underline the environment-gene-age interaction in the occurrence of PD. We have examined the behavior of mice and the PD-like pathologies of the brain and gut. The present results showed that impairments of the motor function and olfactory function were more serious in old hα-syn+/- mice with rotenone than that in young mice. The dopaminergic neuron loss in the SNc is more in old hα-syn+/- mice with rotenone than in young mice. Expression of hα-syn+/- is increased in the SNc of hα-syn+/- mice following rotenone treatment for 2 months. Furthermore, the number of activated microglia cells increased in SNc and accompanied the high expression of inflammatory cytokines, namely, TNF-α and IL-18 in the midbrain of old hα-syn+/- mice treated with rotenone. Meanwhile, we found that after treatment with rotenone, hα-syn positive particles deposited in the intestinal wall, intestinal microflora, and T lymphocyte subtypes of Peyer's patches changed, and intestinal mucosal permeability increased. Moreover, these phenomena were age-dependent. These findings suggested that rotenone aggravated the PD-like pathologies and affected the brain and gut of human α-syn+/- transgenic mice in an age-dependent manner.

13.
Ocean Coast Manag ; 226: 106263, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35996376

RESUMEN

In the post-COVID-19 pandemic era, how to promote blockchain technology to improve the efficiency of port customs clearance and logistics transparency has become a hot research question in the shipping industry. In this paper, we investigate the value of blockchain-based vertical cooperation led by a port or a shipping company in a one-to-two shipping service competition model. A status quo scenario and two different investment scenarios led by different stakeholders are constructed, and equilibrium solutions of the Stackelberg game in three scenarios are proposed. Meanwhile, consumer surplus and social welfare under different cooperation frameworks are discussed. We find that i) investment in blockchain technology can significantly increase the profits of shipping supply chain participants. ii) From the point of view of profit, when the investment efficiency of the port and the shipping company satisfies a certain relationship, there is a balanced strategy for both parties to invest in blockchain technology. iii) The more intense the competition for the services of shipping companies, the lower the level of blockchain technology to improve the logistics capabilities of the shipping supply chain participants. iv) The port's investment in blockchain technology brings more consumer surplus and social welfare. The abovementioned findings can provide managerial insights for ports and shipping companies and present decision support for the government to formulate blockchain technology promotion policies.

14.
Front Cardiovasc Med ; 9: 836514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800169

RESUMEN

Cardiac resynchronization therapy (CRT) for heart failure requires transvenous insertion of a left ventricular pacing lead through the coronary sinus. However, repeated intraoperative dislocations often occur. Therefore, we describe a novel technique that uses the loop technique to treat patients with repeated intraoperative dislocations during transvenous left ventricular lead implantation to stabilize the lead in its final position. In five patients with repeated intraoperative dislocation during transvenous left ventricular lead implantation, the loop technique was successfully used to stabilize the lead in its final position. The pacing and sensing parameters were satisfactory in all patients at implantation and 12 months post-operatively. Compared with the pre-operative values, the 12-month post-operative values for the left ventricular ejection fraction were significantly increased and the left ventricular end systolic dimension and left ventricular end diastolic dimension were significantly decreased (P < 0.05). The left ventricular ejection fraction of these 5 patients increased by more than 15%. CRT significantly improved the left ventricular structure and function of these 5 patients. During the 1-, 3-, 6-, and 12-month follow-ups, no left ventricular lead dislocations were observed. This loop technique is safe and effective and can be considered for repeated intraoperative dislocation during transvenous left ventricular lead implantation through the coronary sinus of a CRT device.

15.
Neuropeptides ; 96: 102268, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35841876

RESUMEN

According to many in the field,the prevalence of Alzheimer's disease (AD) in type II diabetes (T2DM) populations is considerably higher than that in the normal population. Human islet amyloid polypeptide (hIAPP) is considered to be a common risk factor for T2DM and AD. Preliminary observations around T2DM animal model show that the decrease of adult neural stem cells (NSCs) in the subventricular zone (SVZ) is accompanied by olfactory dysfunction. Furthermore, impaired olfactory function could serve as to an early predictor of neurodegeneration,which is associated with cognitive impairment. However, the synergistic effects between hIAPP and amyloid-beta (Aß) 1-42 in the brain and the neurodegeneration remains to be further clarified. In this study, olfactory capacity, synaptic density, status of NSC in SVZ, and status of newborn neurons in olfactory bulb (OB) were assessed 6 months after stereotactic injection of oligomer Aß1-42 into the dens gyrus (DG) of hIAPP-/+ mice or wild-type homogenous mice. Our results set out that Aß42 and amylin co-localized into OB and raised Aß42 deposition in hIAPP-/+ mice compared with wild-type brood mice. In addition, 6 months after injection of Aß1-42 in hIAPP-/+ mice, these mice showed increased olfactory dysfunction, significant loss of synapses, depletion of NSC in SVZ, and impaired cell renewal in OB. Our present study suggested that the synergistic effects between hIAPP and Aß1-42 impairs olfactory function and was associated with decreased neurogenesis in adults with SVZ.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Trastornos del Olfato , Animales , Ratones , Humanos , Ventrículos Laterales , Neurogénesis , Bulbo Olfatorio
16.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457033

RESUMEN

The growth of leaves is subject to strict time regulation. Several genes influencing leaf growth have been identified, but little is known about how genes regulate the orderly initiation and growth of leaves. Here, we demonstrate that TaKLU/TaCYP78A5 contributes to a time regulation mechanism in leaves from initiation to expansion. TaKLU encodes the cytochrome P450 CYP78A5, and its homolog AtKLU has been described whose deletion is detrimental to organ growth. Our results show that TaKLU overexpression increases leaf size and biomass by altering the time of leaf initiation and expansion. TaKLU-overexpressing plants have larger leaves with more cells. Further dynamic observations indicate that enlarged wheat leaves have experienced a longer expansion time. Different from AtKLU inactivation increases leaf number and initiation rates, TaKLU overexpression only smooths the fluctuations of leaf initiation rates by adjusting the initiation time of local leaves, without affecting the overall leaf number and initiation rates. In addition, complementary analyses suggest TaKLU is functionally conserved with AtKLU in controlling the leaf initiation and size and may involve auxin accumulation. Our results provide a new insight into the time regulation mechanisms of leaf growth in wheat.


Asunto(s)
Ácidos Indolacéticos , Hojas de la Planta , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Transducción de Señal , Triticum/genética
17.
J Colloid Interface Sci ; 607(Pt 1): 61-67, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34492354

RESUMEN

Rechargeable alkaline nickel-zinc (Ni-Zn) batteries are attracting increased attention owing to their exceptional inherent safety and high specific capacity. Unfortunately, the limited power and cycling performances of these Ni-Zn batteries are still challenging. Herein, bimetal nickel-cobalt sulfide/ reduced graphene oxide (NiCo-S/RGO) composites with tunable compositions are synthesized by rational designing precursor and subsequent sulfidation treatment. NiCo-S is evenly anchored on RGO surface, resulting in increased number of electrochemical active sites, accelerated electrolyte ion diffusion, and enhanced electrical conductivity. Particularly, by tuning the Ni and Co composition ratios in NiCo-S, NiCo-S/RGO with a Ni to Co ratio of 2:1 (NiCo-S-2/RGO) shows a specific capacity of 145.7 mA h g-1 at 1 A g-1 and long-life cycling retention of 84.7% after 1000 cycles, and the above performances are superior than the controlled samples with other Ni to Co ratios. Furthermore, the as-assembled alkaline zinc batteries of NiCo-S-2/RGO//Zn deliver an impressive specific energy of 333.2 W h kg-1, showing great potential in practical applications. This experiment hopefully provides new idea for construction of high-performance electrodes of aqueous rechargeable batteries.

18.
J Int Med Res ; 49(1): 300060520985639, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33435768

RESUMEN

OBJECTIVE: Cardiovascular disease is a major cause of death. This study evaluated the relationship between serum cystatin-c and coronary lesion severity in coronary artery disease (CAD) patients with a normal glomerular filtration rate. METHODS: Nine hundred and fifty-nine patients were retrospectively included and divided into non-CAD and CAD groups according to coronary angiography results. CAD patients were classified into three groups by Gensini score tertiles. Multivariable logistic regression was used to study the relationship between serum cystatin-c and coronary lesion severity. RESULTS: Serum cystatin-c levels were significantly higher in CAD patients than in non-CAD patients. Correlation analysis revealed significant correlations between serum cystatin-c levels with the Gensini score and the number of diseased vessels. The area under the receiver operating characteristic curve of serum cystatin-c was 0.544 and 0.555 for predicting a high Gensini score and three-vessel disease, respectively. Multivariate stepwise regression analysis demonstrated that the serum cystatin-c level was an independent predictor of a high Gensini score [odds ratio (OR) = 2.177, 95% confidence interval (CI) 1.140-3.930] and three-vessel disease (OR = 1.845, 95% CI 0.994-3.424) after adjusting for the conventional CAD risk factors. CONCLUSIONS: Serum cystatin-c was elevated in CAD patients and may be an independent predictor of CAD severity.


Asunto(s)
Enfermedad de la Arteria Coronaria , Biomarcadores , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Tasa de Filtración Glomerular , Humanos , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad
19.
Exp Neurol ; 334: 113490, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33007295

RESUMEN

Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) have a common pathology. Both diseases are characterized by local deposition of amyloid proteins in the brain or islet organ, but their phenotypes and clinical manifestation vary widely. Although the sources of islet amyloid polypeptide (IAPP) and amyloid beta (Aß) are independent, their fibrillar sequences are highly homologous. The prevalence of AD in T2DM populations is considerably higher than that in the normal population, but a mechanistic linkage remains elusive. Therefore, the present study aimed to explore the effects of Aß42 deposition in the brain on the persistently expression of human IAPP (hIAPP). Additionally, cognitive ability, synaptic plasticity, the state of neural stem cells and mitochondrial function were evaluated at 2 or 6 months after stereotaxically injected the oligomer Aß1-42 into the dentate gyrus of hIAPP (-/+) mice or the wild-type littermates. We found that Aß42 and amylin were co-located in hippocampus and Aß42 levels increased when Aß1-42 was injected in hIAPP transgenic mice compared with that of the wild-type littermates. Furthermore, at 6 months after Aß1-42 injection in hIAPP (-/+) mice, it exhibits exacerbated AD-related pathologies including Aß42 deposition, cognitive impairment, synapse reduction, neural stem cells exhaustion and mitochondrial dysfunction. Our present study suggested that hIAPP directly implicated the Aß42 production and deposition as an important linkage between T2DM and AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Fragmentos de Péptidos/toxicidad , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/administración & dosificación , Animales , Línea Celular , Disfunción Cognitiva/genética , Giro Dentado/metabolismo , Giro Dentado/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/administración & dosificación , Unión Proteica/fisiología
20.
Neural Plast ; 2020: 6283754, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32273890

RESUMEN

The motor and nonmotor symptoms of PD involve several brain regions. However, whether α-syn pathology originating from the SNc can directly lead to the pathological changes in distant cerebral regions and induce PD-related symptoms remains unclear. Here, AAV9-synapsin-mCherry-human SNCA (A53T) was injected into the unilateral SNc of mice. Motor function and olfactory sensitivity were evaluated. Our results showed that AAV9-synapsin-mCherry-human SNCA was continuously expressed in SNc. The animals showed mild motor and olfactory dysfunction at 7 months after viral injection. The pathology in SNc was characterized by the loss of dopaminergic neurons accompanied by ER stress. In the striatum, hα-syn expression was high, CaMKß-2 and NR2B expression decreased, and active synapses reduced. In the olfactory bulb, hα-syn expression was high, and aging cells in the mitral layer increased. The results suggested that hα-syn was transported in the striatum and OB along the nerve fibers that originated from the SNc and induced pathological changes in the distant cerebral regions, which contributed to the motor and nonmotor symptoms of PD.


Asunto(s)
Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Sinapsis/patología , alfa-Sinucleína/metabolismo , Adenoviridae/fisiología , Animales , Vectores Genéticos/fisiología , Masculino , Ratones Endogámicos C57BL , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , alfa-Sinucleína/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...